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The nonnegative rank of a nonnegativematrix is theminimumnum-

ber of nonnegative rank-one factors needed to reconstruct it ex-

actly. The problem of determining this rank and computing the

corresponding nonnegative factors is difficult; however it has many

potential applications, e.g., in data mining and graph theory. In

particular, it can be used to characterize the minimal size of any

extended reformulation of a given polytope. In this paper, we intro-

duce and study a related quantity, called the restricted nonnegative

rank. We show that computing this quantity is equivalent to a prob-

lem in computational geometry, and fully characterize its computa-

tional complexity. This in turn sheds new light on the nonnegative

rank problem, and in particular allows us to provide new improved

lower bounds based on its geometric interpretation.We apply these

results to slack matrices and linear Euclidean distance matrices and

obtain counter-examples to two conjectures of Beasley and Laffey,

namely we show that the nonnegative rank of linear Euclidean dis-

tance matrices is not necessarily equal to their dimension, and that

the rank of a matrix is not always greater than the nonnegative rank

of its square.
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1. Introduction

The nonnegative rank of anm-by-n real nonnegativematrixM ∈ Rm×n+ is theminimumnumber of

nonnegative rank-one factors needed to reconstruct M exactly, i.e., the minimum integer k such that

there exists U ∈ Rm×k+ and V ∈ Rk×n+ with M = UV = ∑k
i=1 U:iVi:. The pair (U, V) is called a rank-k

nonnegative factorization2 of M. The nonnegative rank of M is denoted rank+(M). Clearly,

rank(M) � rank+(M) � min(m, n).

Determining the nonnegative rank and computing the corresponding nonnegative factorization has

been studied relatively recently in the linear algebra literature [5,15]. A lot more attention has been

devoted to the approximate nonnegative factorization problem (called nonnegative matrix factoriza-

tion, NMF for short [35]) consisting in finding two low-rank nonnegative factors U and V such that

M ≈ UV or, more precisely, solving

min
U∈Rm×k+ ,V∈Rk×n+

||M − UV ||F . (NMF)

NMF has been widely used as a data analysis technique [7], e.g., in text mining, image processing,

hyperspectral data analysis, computational biology, and clustering. Nevertheless, there are not many

theoretical results about thenonnegative rank andbetter characterizations, in particular lower bounds,

could help practitioners. For example, finding an efficient way to compute exact nonnegative factor-

izations could help to design new NMF algorithms using a two-step strategy [42]: first approximate

M with a low-rank nonnegative matrix A (e.g., using the singular value decomposition3 ) and then

compute a nonnegative factorization of A. Bounds for the nonnegative rank could also help select the

factorization rank of the NMF, replacing the trial and error approach often used by practitioners. For

example, in hyperspectral image analysis, the nonnegative rank corresponds to the number of mate-

rials present in the image and its computation could lead to more efficient algorithms detecting these

constitutive elements, see [9,17,30,26] and the references therein.

An extended formulation (or lifting) for a polytope P ⊆ Rn is a polyhedron Q ⊆ Rn+p such that

P = projx(Q) := {x ∈ Rn | ∃y ∈ Rp s.t. (x, y) ∈ Q}.
Extended formulations whose size (number of constraints plus number of variables defining Q ) is

polynomial in n are called compact and are of great importance in integer programming. They allow

to reduce significantly the size of certain linear programs arising in the context of integer program-

ming and combinatorial optimization, and therefore provide a way to solve them efficiently, i.e., in

polynomial-time (see [16] for a survey). Yannakakis [45, Theorem 3] showed that the minimum size s

of an extended formulation of a polytope4

P = {x ∈ Rn | Cx + d � 0, Ax = b},
is of the sameorder 5 as the sumof its dimensionn and thenonnegative rank of its slackmatrix SM � 0,

where each column of the slack matrix is defined as

SM(:, i) = Cvi + d � 0, i = 1, 2, . . . ,m, (1.1)

and vectors vi are them vertices of the polytope P. Formally, we then have

s = �(n + rank+(SM)).

2 Note that matrices U and V in a rank-k nonnegative factorization are not required to have rank k.
3 Even though an optimal low-rank approximation of a nonnegativematrix is not always nonnegative, it is often the case in practice

[33].
4 This can be generalized to polyhedra [16].
5 More precisely, the minimum number of inequalities in an extended formulation of P is exactly equal to the nonnegative rank

of the slack matrix of P, see, e.g., [31].
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In particular, any rank-k nonnegative factorization (U, V) of SM = UV provides the following extended

formulation for P with size �(n + k)

Q = {(x, y) ∈ Rn+k | Cx + d = Uy, Ax = b, y � 0}. (1.2)

Indeed, projx(Q) ⊆ P since Uy � 0 implies Cx + d � 0 for any x ∈ projx(Q), and P ⊆ projx(Q) since
Cvi + d = SM(:, i) = UV(:, i) implies that (vi, V(:, i)) ∈ Q for all i and therefore each vertex vi of

P belongs to projx(Q). Intuitively, this extended formulation parametrizes the space of slacks of the

original polytope with the convex cone {Uy | y ≥ 0}.
It is therefore interesting to compute bounds for the nonnegative rank in order to estimate the size

of these extended formulations. For example, Goemans [28] recently used this result to show that the

size of any linear programming formulation of the permutahedron (polytope whose n! vertices are

permutations of [1, 2, . . . , n]) is at least �(n log(n)) variables plus constraints (cf. Section 3).

Wewill see in Section 3.1 that the nonnegative rank is closely related to a problem in computational

geometry that consists in finding a polytope with minimum number of vertices nested between two

given polytopes. Therefore a better understanding of the properties of the nonnegative rank would

presumably also allow to improve characterization of the solutions to this geometric problem.

The nonnegative rank has connections with other problems, e.g., in communication complexity

theory [45,36], probability [10], and graph theory (cf. Section 3). It is also related to the cp-rankwhich,

for a given nonnegative symmetric matrixM ∈ Rm×m, seeks a nonnegative factorization with factors

U and V equal to each other:

cp-rank(M) = min k such that ∃U ∈ Rm×k+ withM = UUT =
k∑

i=1

U:iUT:i .

If such a decomposition exists,M is said to be a completely positive matrix; see [6] and the references

therein. Apart from the trivial relationship rank+(M) � cp- rank(M), we are not aware of any work

relating these two quantities.

1.1. Summary of our results

The main contribution of this paper is to introduce improved lower bounds for the nonnegative

rank. We also give some insightful results about its geometric interpretation. Below we sketch the

general ideas behind our results.

In Section 2, we introduce and study a new quantity called the restricted nonnegative rank (RNR) of

a nonnegative matrix M, denoted rank∗+(M). Its definition is similar to that of the nonnegative rank

(NNR) with an additional rank condition on the first factor of the factorization.

We prove that computing the RNR is equivalent to a problem in computational geometry, referred

to as the nested polytopes problem (NPP) (Theorem1). Given twonested full-dimensional polytopes, say

S ⊆ P, the NPP consists in finding a third polytope T nested between S and P with aminimumnumber

of vertices, i.e., we want S ⊆ T ⊆ P. Using an appropriate reduction, we establish the equivalence

between NPP and RNR computation using the following one-to-one correspondence:

RNR computation NPP

rank of input matrix M (dimension of input polytopes P and S)+1

columns of input matrix M ∈ Rm×n n vertices of input polytope S

facets of the nonnegative orthant Rm+ m facets of input polytope P

columns of sought factor U ∈ Rm×k k vertices of sought nested polytope T

The NPP has been widely studied in the computational geometry literature. In particular, it has

been shown that
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• The NPP can be solved in polynomial time when the input polytopes have dimension two [1]. This

implies that the RNR can be computed efficiently when rank(M) = 3 (Theorem 2). Moreover, this

shows that checking whether rank+(M) = 3 for a rank-three matrix M can also

be done in polynomial time, becausewehave rank+(M) = rank(M) ⇐⇒ rank∗+(M) = rank(M)
(Corollary 1).

• The NPP is NP-hard in dimension three or more [20]. Therefore, computing the RNR is NP-hard as

soon as rank(M) � 4 (Theorem 3).

We conclude Section 2 by proving some useful properties of the RNR, which sometimes differ from

those of the standard and nonnegative ranks. For example, for an m-by-n matrix M, we have

rank∗+(M) � nwhile rank∗+(M) � m.

In Section 3, we describe a geometric interpretation of the NNR. Similarly to RNR, computing the

NNR of a nonnegative matrix M is equivalent to a geometric problem involving nested polytopes.

However, this problem is more general than an NPP, in the sense that the inner polytope is no longer

guaranteed to be full-dimensional. More precisely, the n points whose convex hull define the inner

polytope S still correspond to the columnsofM, and them facets of theouterpolytopeP also correspond

to the facets of the nonnegative orthant Rm+, but the reduction from NNR no longer produces a full-

dimensional inner polytope S: the dimension of the affine space spanning S can nowbe strictly smaller

than the dimension of the outer polytope P. We will call this type of problem a generalized nested

polytopes problem.

Our new concept of restricted nonnegative rank has close ties with the nonnegative rank, which

is also apparent from the geometric point of view: any solution to the generalized nested polytopes

problem based on the NNR for matrixM can be converted to a feasible solution to the NPP, and hence

to the corresponding RNR ofmatrixM. Indeed, given a solution polytope T , we can intersect it with the

affine space spanned by S (corresponding to the column space ofM) and obtain a newpolytope T ′. This
polytope T ′ contains S (because T does) while living in the same affine subspace as S (by construction).

Therefore T ′ is a solution of the NPP corresponding to the RNR of M (Theorem 3.2). Hence, we have

rank∗+(M) � #vertices(T ′) = #vertices(T ∩ affine hull(S)).

This relationship now allows us to derive new lower bounds on the nonnegative rank. Lettingφr(k)
be a standard upper bound on the number of vertices of the intersection of a polytope having k vertices

(i.e., T) with a (r − 1)-dimensional space (i.e., the affine hull of S, which has dimension rank(M) − 1),

we finally have that

rank∗+(M) � #vertices(T ∩ affine hull(S)) � φrank(M)(rank+(M)),

see Theorem 5. Inverting the non-decreasing function φr(.) finally gives a lower bound for the NNR that

depends on the RNR and the usual rank:

rank+(M) � φ−1
rank(M)(rank

∗+(M)).

As explained above, the RNR is, in general, NP-hard to compute. However, there are situations for

which it can be computed efficiently. For example, we show in Section 4 that the RNR of slackmatrices

and linear Euclidean distance matrices (linear EDM’s) is maximal, i.e., it is equal to the number of

columns of these matrices (Theorems 7 and 8). We then apply our lower bound φ−1
rank(M)(rank

∗+(M))

on the NNR and show that it generalizes and improves the bounds of Goemans [28] for slack matrices

and of Beasley and Laffey [3] for linear EDM’s. We also obtain counter-examples to two conjectures of

Beasley and Laffey [3], namelywe show that thenonnegative rankof linear Euclideandistancematrices

is not necessarily equal to their dimension, and that the rank of a matrix is not always greater than the

nonnegative rank of its square.

We conclude with some open questions on the complexity of the NNR computation.
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1.2. Notation

The set of real matrices of dimension m by n is denoted Rm×n; for A ∈ Rm×n, we denote the ith

column of A by A:i or A(:, i), the jth row of A by Aj: or A(j, :), and the entry at position (i, j) by Aij or

A(i, j); for b ∈ Rm×1 = Rm, we denote the ith entry of b by bi. Notation A(I, J) refers to the submatrix

of A with row and column indices respectively in I and J, and a:b is the set {a, a + 1, . . . , b − 1, b}
(for a and b integers with a � b). The set Rm×n with component-wise nonnegative entries is denoted

Rm×n+ . Matrix AT is the transpose of matrix A. The rank of a matrix A is denoted rank(A), its column

space col(A). Both the convex hull of a set of points S and the convex hull of the columns of a matrix S

are denoted conv(S). The number of vertices of a polytope Q is denoted by # vertices(Q). The matrix

obtained from the concatenation of the columns of twomatrices A ∈ Rm×n and B ∈ Rm×p is denoted

[A B] ∈ Rm×(n+p). The sparsity pattern of a vector is the set of indices of its zero entries (it is the

complement of its support).

2. Restricted nonnegative rank

In this section, we analyze the following quantity

Definition1. The restrictednonnegative rankof anonnegativematrixM, denoted rank∗+(M), is themin-

imumvalue of k such that there existsU ∈ Rm×k+ andV ∈ Rk×n+ withM = UV and rank(U)= rank(M).

This is the definition of the standard nonnegative rank with an additional constraint on the rank of

the first factor U; note that this constraint can equivalently be formulated as col(U) = col(M) (equal-
ity between column spaces of M and U). Given a nonnegative matrix M, we are interested in com-

puting its restricted nonnegative rank rank∗+(M) and a corresponding nonnegative factorization, i.e.,

solve

(RNR) Given a nonnegative matrix M ∈ Rm×n+ , find k = rank∗+(M) and compute U ∈ Rm×k+ and

V ∈ Rk×n+ such thatM = UV and rank(U) = rank(M).

Motivation to study this restriction includes the following:

1. The restricted nonnegative rank provides a new upper bound for the nonnegative rank, since

rank+(M) � rank∗+(M).
2. The restricted nonnegative rank can be characterized more easily than the nonnegative rank. In

particular, as explained in the introduction, its geometrical interpretation (Section 2.1) will lead

to new improved lower bounds for the nonnegative rank (Sections 3 and 4).

RNR is a generalization of exact nonnegative matrix factorization (exact NMF) introduced by Vavasis

[42], which is the problem of checking whether a matrixM with rank r satisfies rank+(M) = r and, if

the answer is positive, to compute a rank-r nonnegative factorization ofM. If rank+(M) = r then it is

clear that rank∗+(M) = rank+(M) since the rank of U in any rank-r nonnegative factorization (U, V)
of M must be equal to r.

Vavasis studies the computational complexity of exact NMF and proves it is NP-hard by showing

its equivalence with a problem called intermediate simplex. This construction requires both the di-

mensions of input matrix M and its rank r to increase to obtain NP-hardness. This result also implies

NP-hardness of RNR when the rank of matrix M is not fixed (i.e., r is part of the input). In contrast,

when the rank r of input matrix M is fixed, no results on the complexity of exact NMF are known

(except in the trivial cases r = 1, 2 [41]). The situation for RNR is quite different: we are going to show

that RNR can be solved in polynomial-time when r = 3 and that it is NP-hard for any fixed r � 4, see

Theorems 2 and 3. In particular, this result implies that exact NMF can be solved in polynomial-time

for rank-three nonnegative matrices, see Corollary 1.
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To proceed,we first showequivalence between RNR and another problem in computational geome-

try, closely related to intermediate simplex (Section2.1), and thenapply results fromthecomputational

geometry literature to conclude about its computational complexitywhen the rank of the inputmatrix

is fixed (Section 2.2).

2.1. Equivalence with the nested polytopes problem

Let consider the following problem called nested polytopes problem (NPP):

(NPP) Given a full-dimensional bounded polyhedron P described bym inequalities in Rr−1

P = {x ∈ Rr−1 | Cx + d ≥ 0},
(where full-dimensionality is equivalent to requiring that (C d) ∈ Rm×r is a rank-r matrix) and a set

S of n points belonging to P such that conv(S) is also full-dimensional, find the minimum number

k of points belonging to P whose convex hull T contains S (and conv(S)), i.e., such that conv(S) ⊆
T ⊆ P.

Polytope P is referred to as the outer polytope, and conv(S) as the inner polytope; note that they are

given by two distinct types of representations (facets for P, extreme points for conv(S)).
The intermediate simplex problemmentioned earlier and introduced by Vavasis [42] is a particular

case of NPP in which one asks whether k is equal to r (which is the minimum possible value), i.e., if

there exists a simplex T (defined by r vertices in Rr−1) contained in P and containing S.

We now prove equivalence between RNR and NPP, which generalizes the result of Vavasis [42]

showing equivalence between exact NMF and intermediate simplex.

Theorem 1. There are polynomial-time reductions from RNR to NPP and from NPP to RNR.

Proof. Let us construct a reduction from RNR to NPP. First we (1) delete the zero rows and columns

of M and (2) normalize the columns of M such that it becomes column stochastic (elements in each

column are nonnegative and sum to one). One can easily check that it gives a polynomially equivalent

RNR instance [12]. We then decomposeM as the product of two rank-r matrices (using, e.g., reduction

to row-echelon form)

M = AB ⇐⇒ M:i =
r∑

l=1

A:lBli ∀i, (2.1)

where r = rank(M),A ∈ Rm×r andB ∈ Rr×n.Wefirst showthatmatricesAandB canbeassumed tobe

column stochastic without loss of generality. Indeed, sinceM is column stochastic, at least one column

of A does not sum to zero (otherwise all columns of AB = M would sum to zero, a contradiction).

One can then add that column to all columns of A that sum to zero, updating B accordingly, so that all

columns of A have a positive sum. Normalizing now each column of A, updating again B accordingly,

provides a column stochastic matrix A. Finally, it is easy to see that, since M = AB, matrices M and A

being column stochastic implies that matrix B also is.

In order to find a solution of RNR, we have to find U ∈ Rm×k+ and V ∈ Rk×n+ such thatM = UV and

rank(U) = r. For the same reasons as for A and B, U and V can be assumed to be column stochastic

without loss of generality. Moreover, since

M = UV = AB,

and rank(M) = rank(A) = rank(U) = r, the column spaces ofM, A and U coincide, implying that the

columns of U must be a linear combination of the columns of A. The columns of U must then belong

to the following set

Q =
⎧⎨
⎩u ∈ Rm | u ∈ col(A), u � 0 and

m∑
i=1

ui = 1

⎫⎬
⎭ . (2.2)
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One can therefore reduce the search space for those columns to the (r − 1)-dimensional polyhedron

corresponding to the coefficients of all possible linear combinations of the columns of A generating

stochastic columns. Defining

C(:, i) = A(:, i) − A(:, r) 1 � i � r − 1, and d = A(:, r),
and introducing the affine function f : Rr−1 → Rm : x → f (x) = Cx + d, which is injective since C

is full rank (because A is full rank), this polyhedron can be defined as

P=
⎧⎨
⎩x ∈ Rr−1 | A(:, 1 : r − 1)x +

(
1 −

r−1∑
i=1

xi

)
A(:, r) � 0

⎫⎬
⎭ ={x ∈ Rr−1 | f (x) � 0}. (2.3)

Note that B(1 : r − 1, j) ∈ P ∀j since M(:, j) = AB(:, j) = f (B(1 : r − 1, j)) � 0 ∀j.
Let us show that P is bounded: suppose P is unbounded, then

∃ x ∈ P, ∃ y �= 0 ∈ Rr−1, ∀α � 0 : x + αy ∈ P,

⇐⇒ C(x + αy) + d = (Cx + d) + αCy � 0.

Since Cx + d � 0, this implies that Cy � 0. Observe that columns of C sum to zero (since the columns

of A sum to one) so that Cy sums to zero as well; moreover, C is full rank and y is nonzero implying

that Cy is nonzero and therefore that Cy must contain at least one negative entry, a contradiction.

Notice that the set Q can be equivalently written as

Q = {u ∈ Rm | u = f (x), x ∈ P}.
Noting X = [x1 x2 . . . xk] ∈ Rr−1×k , f (X) = [f (x1) f (x2) . . . f (xk)] = CX + [d d . . . d], we finally

have that the following statements are equivalent

(i) ∃U ∈ Rm×k, V ∈ Rk×n column stochastic with rank(U) = rank(M), and M = UV ,

(ii) ∃x1, x2, . . . xk ∈ P and V ∈ Rk×n column stochastic such that

M = f (B(1 : r − 1, :)) = f (X)V = f (XV),

(iii) ∃x1, x2, . . . xk ∈ P and V ∈ Rk×n column stochastic such that

B(1 : r − 1, :) = XV .

The equivalence between (i) and (ii) follows from the above derivations (i.e., U = f (X) for some

x1, x2, . . . xk ∈ P); f (X)V = f (XV)becauseV is column stochastic (so that [d d . . . d]V = [d d . . . d]),
and the second equivalence between (ii) and (iii) is a consequence from the fact that f is an injection.

We have then reduced RNR of a rank-r matrixM to an instance of NPPwith nested full-dimensional

polytopes in Rr−1: the inner polytope is constructed from the columns of M (more precisely it is the

convex hull of the n columns in truncatedmatrix B(1 : r−1, :)), the outer polytope P is definedwithm

inequalities f (x) ≥ 0 (constructed from them rows in truncatedmatrix A(:, 1 : r)), which correspond

to the facets of Rm+, and the goal is to find the minimum number k of points xi belonging to the outer

polytope P whose convex hull contains the inner polytope conv(S).
Because all steps in the above derivation are equivalences, we have actually also defined a reduction

from NPP to RNR; to map a NPP instance (based on data S, C and d) to a RNR instance, we take

M(:, i) = f (si) = Csi + d � 0 for each si ∈ S 1 � i � n,

and we have that rank(M) = r because the n points si have a full-dimensional convex hull (they

affinely span P). �

It is worth noting thatM would be the slack matrix of polytope P if S was the set of vertices of P (cf.

Section 1). This will be useful later in Section 4.1.
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Fig. 1. Illustration of the algorithm of Aggarwal et al. [1].

2.2. Computational complexity

2.2.1. Rank-three matrices

UsingTheorem1,RNRfora rank-threematrixcanbereduced toa two-dimensionalnestedpolytopes

problem.6 Therefore, one has to find a convex polygon T with minimum number of vertices nested

between two given convex polygons conv(S) ⊆ P. This problem has been studied by Aggarwal et al.

in [1], who proposed an algorithm running in O(p log(k)) operations7 , where p is the total number

of vertices of the given polygons conv(S) and P, and k is the number of vertices of the minimal nested

polygon T . IfM is anm-by-nmatrix thenp � m+n since conv(S)has atmostn vertices and thepolygon

P is defined bym inequalities (so that it has atmostm vertices). Moreoverwe have the following upper

bound on the restricted nonnegative rank: rank∗+(M) � min(m, n), which follows from the fact that

T = conv(S) and T = P are feasible solutions for RNR. Finally, we conclude that one can compute the

restricted nonnegative rank of a rank-threem-by-nmatrix in O
(
(m + n) log(min(m, n))

)
operations.

Theorem 2. For rank(M) � 3, RNR can be solved in polynomial-time.

Proof. Cases r = 1, 2 are trivial since any rank-1 (resp. 2) nonnegative matrix can always be ex-

pressed as the sum of 1 (resp. 2) nonnegative factors [41]. Case r = 3 follows from Theorem 1 and the

polynomial-time algorithm of Aggarwal et al. [1]. �

For the sake of completeness,we sketch themain ideas behind the algorithmof Aggarwal et al. They

first make the following observations: (1) any vertex of a solution T can be assumed to belong to the

boundary of the polygon P (otherwise it can be projected back on P in order to generate a new solution

containing the previous one), (2) any segment whose ends are on the boundary of P and tangent to

conv(S) (i.e., S is on one side of the segment, and the segment touches S) defines a polygon with the

boundary of P which must contain a vertex of any feasible solution T (otherwise the tangent point on

conv(S) could not be contained in T), see, e.g., set Q on Fig. 1 delimited by the segment [p1, p2] and
the boundary of P, and such that T ∩ Q �= ∅ for any feasible solution T .

Starting from any point p1 of the boundary of P, one can trace the tangent to conv(S) and hence

obtain the next intersection p2 with P. Point p2 is chosen as the next vertex of a solution T , and the

same procedure is applied (say k times) until the algorithm can reach the initial point without going

6 See https://sites.google.com/site/nicolasgillis/code where a MATLAB® code is provided.
7 Wang generalized the result for non-convex polygons [43]. Bhadury and Chandrasekaran propose an algorithm to compute all

possible solutions [8].

https://sites.google.com/site/nicolasgillis/code
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through conv(S), see Fig. 1. This generates a feasible solution T(p1) = conv({p1, p2, . . . , pk}). Because
of (1) and (2), this solution has at most one vertex more than an optimal one, i.e., k � rank∗+(M) + 1

(since T determines, with the boundary of P, k − 1 disjoint polygons tangent to conv(S)). Moreover,

because of (1) and (2), there must exist a vertex of an optimal solution on the boundary of P between

p1 and p2.

The point p1 is then replaced by the so-called ‘contact change points’ located on this part of the

boundary of Pwhile the corresponding solution T(p1) is updated using the procedure described above.

The contact change points are: (a) the vertices of P between p1 and p2, and (b) the points for which

one tangent point of T(p1) on conv(S) is changed when p1 is replaced by them. This (finite) set of

points provides a list of candidates where the number of vertices of the solution T could potentially be

reduced (i.e., where p1 and pk could coincide) by replacing p1 by one of these points. It is then possible

to check whether the current solution can be improved or not, and guarantee global optimality. In the

example of Fig. 1, moving p1 on the (only) vertex of P between p1 and p2 generates an optimal solution

of this RNR instance (since it reduces the original solution from 5 to 4 vertices).

Finally, Theorem 2 also allows to shed some light on the nonnegative rank computation.

Corollary 1. Exact NMF can be solved in polynomial-time for any nonnegative matrix M with

rank(M) � 3.

Proof. Given a matrix M with rank r, we observe that whenever rank+(M) = r, one also has

rank∗+(M) = r since in any rank-r nonnegative factorization (U, V) of M, rank(U) = r. Therefore

rank+(M) = r ⇐⇒ rank∗+(M) = r. Hence, determining whether rank+(M) = r or not and, if

yes, computing a rank-r nonnegative factorization (i.e., solve exact NMF) can be done by solving RNR,

which is done in polynomial-time for r � 3. �

2.2.2. Higher-rank matrices

For a rank-four matrix, RNR reduces to the problem of finding a polytope T with the minimum

number of vertices nested between two three-dimensional polytopes S ⊆ P. This problem has been

studied by Das et al. [20,18] and has been shown to be NP-hardwhenminimizing the number of facets

of T (the reduction is from planar-3SAT). From this result, we deduce using a duality argument that

minimizing the number of vertices of T , hence solving RNR, is NP-hard as well [19,14].

Theorem 3. For rank(M) � 4, RNR is NP-hard.

Proof. The NP-hardness results of Das et al. [20,18,19] deals with the minimization of the number of

facets of a polytope nested between an inner polytope described by its vertices and an outer polytope

described by its facets. Taking the polar of the three nested polytopes exchanges the roles of the inner

and outer polytopes, and transforms facet descriptions into vertex descriptions and vice versa, so that

the descriptions of the inner and outer polytopes keep their type and one must now minimize the

number of vertices of the intermediate polytope: this is the formulation of NPP, which is therefore

NP-hard as well. Combining this observation with Theorem 1 concludes the proof. �

Several approximation algorithms for NPP have been proposed in the literature. For example, when

rank(M) = 4, Mitchell and Suri [38] can approximate rank∗+(M) within aO(log(p)) factor, where p is

the total number of vertices of the given polytopes conv(S) and P. Clarkson [14] proposes a random-

ized algorithm finding a polytope T with at most O(dr∗+ ln(r∗+)) vertices and running in O(r∗+2
p1+δ)

expected time (with r∗+ = rank∗+(M), d = rank(M) − 1 and δ is any fixed value > 0).

2.3. Some properties

In this section,wederive someuseful properties of the restrictednonnegative rank. It iswell-known

that for a matrixM ∈ Rm×n+ , we have rank+(M) ≤ min(m, n); surprisingly, this does not hold for the

restricted nonnegative rank.
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Lemma 1. For M ∈ Rm×n+ ,

rank∗+(M) � n but rank∗+(M) � m.

Proof. The first inequality is trivial since M = MI (I being the identity matrix) provides a valid

factorization for RNR. Example 1 below describes a situation where rank∗+(M) = 8 for a 6-by-8

matrixM. �

Example 1. ConstructM using the following NPP instance: P is the three-dimensional cube P = {x ∈
R3 | 0 � xi � 1, 1 � i � 3}, with 6 facets and S is the set of its 8 vertices S = {x ∈ R3 | xi ∈
{0, 1}, 1 � i � 3}. By construction, the convex hull of S is equal to P and the unique and optimal

solution to this NPP instance is T = P = conv(S) with 8 vertices. By Theorem 1, the corresponding

matrixM of the RNR instance

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 0 1 0

0 1 0 0 1 1 0 1

1 1 0 1 0 1 0 0

0 0 1 0 1 0 1 1

1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

has restricted nonnegative rank equal to 8 (note that its rank is 4 and its nonnegative rank is 6, see

Section 3).

Lemma 1 implies that in general rank∗+(M) and rank∗+(MT ) can differ, unlike the rank and nonneg-

ative rank [15]. Note however that when rank(M) � 3, we have

rank∗+(M) � min(m, n),

because the number of vertices of the outer polygon P in the NPP instance is smaller or equal to its

number of facets m in the two-dimensional case or lower, and that the solution T = P is always

feasible.

Lemma 2. Let A ∈ Rm×n+ and B ∈ Rm×r+ , then

rank∗+([A B]) � rank∗+(A) + rank∗+(B).

Proof. Let (Ua, Va) and (Ub, Vb) be solutions of RNR for A and B respectively, then

[A B] = [Ua Ub]
⎡
⎣ Va 0

0 Vb

⎤
⎦ ,

and rank([Ua Ub]) = rank([A B]) since col(Ua) = col(A) and col(Ub) = col(B) by definition. �

Lemma 3. Let M ∈ Rm×n+ with rank(M) = r and rank+(M) = r+, U ∈ Rm×r++ and V ∈ Rr+×n
+ with

M = UV. Then

r+ < rank∗+(M) ⇒ r < rank(U) � r+ and r � rank(V) < r+.

Moreover, if M is symmetric,

r+ < rank∗+(M) ⇒ r < rank(U) < r+ and r < rank(V) < r+.
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Proof. Clearly,

r � rank(U) � r+ and r � rank(V) � r+.

If rank(U) = r, we would have rank∗+(M) = r+ which is a contradiction, and rank(V) = r+ would

imply that V has a right pseudo-inverse V †, so that we could write U = MV † and then r � rank(U) �
min(r, rank(V †)) � r, a contradiction for the same reason.

In caseM is symmetric, to show that rank(U) < r+ and rank(V) > r, we use symmetry andobserve

that UV = M = MT = VTUT . �

Corollary 2. Given a nonnegative matrix M,

rank∗+(M) � rank(M) + 1 ⇒ rank+(M) = rank∗+(M).

If M is symmetric,

rank∗+(M) � rank(M) + 2 ⇒ rank+(M) = rank∗+(M).

Proof. Let r = rank(M), r+ = rank+(M), and U ∈ Rm×r++ and V ∈ Rr+×n
+ such that M = UV . If

r+ < rank∗+(M), by Lemma 3, we have

r < rank(U) � r+ < rank∗+(M),

which is a contradiction if rank∗+(M) � r+1. IfM is symmetric, we have rank(U) < r+ and the above

equation is a contradiction if rank∗+(M) � r + 2. �

These results imply for example that to find a symmetric rank-three nonnegative matrix with

rank+(M) < rank∗+(M), we need rank∗+(M) > rank(M) + 2 = 5 and therefore have to consider

matrices of size at least 6-by-6 with rank∗+(M) = 6.

Example 2. Let us consider the following matrixM and the rank-5 nonnegative factorization (U, V),

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 4 9 16 25

1 0 1 4 9 16

4 1 0 1 4 9

9 4 1 0 1 4

16 9 4 1 0 1

25 16 9 4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= UV, U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 4 0 1

3 0 1 1 0

1 0 0 4 1

0 1 0 4 1

0 3 1 1 0

0 5 4 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 3 5

5 3 1 0 0 0

0 0 1 1 0 0

1 0 0 0 0 1

0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can check that rank(M) = 3, and, using the algorithm of Aggarwal et al. [1], the restricted

nonnegative rank can be computed8 and is equal to 6. Using the above decomposition, it is clear that

rank+(M) � 5 < rank∗+(M) = 6. By Lemma 3, for any rank+(M)-nonnegative factorization (U, V)
of M, we then must have 3 < rank(U) = 4 < rank+(M) implying that rank+(M) = 5.

As we have already seen with Lemma 1, the restricted nonnegative rank does not share all the

nice properties of the rank and the nonnegative rank functions [15]. The next three lemmas exploit

Example 2 further to show different behavior between nonnegative rank and restricted nonnegative

rank.

8 The problem is actually trivial because each vertex of the inner polygon conv(S) is located on a different edge of the polygon P,

so that they define with the boundary of P 6 disjoint polygons tangent to conv(S). This implies that rank∗+(M) = 6, cf. Section 2.2.1.

This matrix is actually a linear Euclidean distance matrix which will be analyzed later in Section 4.2.
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Lemma 4. Let A ∈ Rm×n+ and B ∈ Rm×r+ , then

rank∗+(A + B) � rank∗+(A) + rank∗+(B).

Proof. Take M, U and V from Example 2 and construct A = U(:, 1:3)V(1:3, :) with rank∗+(A) = 3

(since rank(A) = 3), B = U(:, 4:5)V(4:5, :) with rank∗+(B) = 2 (trivial) and rank∗+(A + B) = 6 since

A + B = M. �

Lemma 5. Let A ∈ Rm×n+ and B ∈ Rm×r+ , then

rank∗+([A B]) � rank∗+(A).

where [A B] ∈ Rm×(n+r)
+ denotes the concatenation of the columns of A and B.

Proof. Let us take M, U and V from Example 2, and construct A = M and B = U(:, 1). One has

rank∗+([A B]) � 5, because rank([A B]) = 4 and [A B] = U[V e1] with rank(U) = 4 (where ei denotes

the ith column of the identity matrix of appropriate dimension). �

Lemma 6. Let B ∈ Rm×r+ and C ∈ Rr×n+ , then

rank∗+(BC) � min(rank∗+(B), rank∗+(C)).

Proof. See Example 2 in which rank∗+(M) = 6 and rank∗+(U) � 5 by Lemma 1. �

3. Lower bounds for the nonnegative rank

In this section, we provide new lower bounds for the nonnegative rank based on the restricted

nonnegative rank. Recall that the restricted nonnegative rank already provides an upper bound for the

nonnegative rank since for anm-by-n nonnegative matrix M,

0 � rank(M) � rank+(M) � rank∗+(M) � n. (3.1)

Note that this bound can in general only be computed efficiently in the case rank(M) = 3 (see

Theorems 2 and 3).

As mentioned in the introduction, it might also be interesting to compute lower bounds on the

nonnegative rank. Some work has already been done in this direction, including the following

1. Let M ∈ Rm×n+ be any weighted biadjacency matrix of a bipartite graph G = (V1 ∪ V2, E ⊆
V1 × V2) with M(i, j) > 0 ⇐⇒ (V1(i), V2(j)) ∈ E. A biclique of G is a complete bipartite

subgraph (it corresponds toapositive rectangular submatrixofM).Onecaneasily check thateach

rank-one factor (U:k, Vk:) of any rank-k nonnegative factorization (U, V) ofM can be interpreted

as a biclique of M (i.e., as a positive rectangular submatrix) since M = ∑k
i=1 U:iVi:. Moreover,

these bicliques (U:k, Vk:) must cover G completely since M = UV . The minimum number of

bicliques needed to cover G is then a lower bound for the nonnegative rank (sometimes referred

to as the rectangle covering bound [31]), is called the biclique partition number and is denoted

b(G), see [44] and the references therein. Its computation is NP-complete [39] and is directly

related to the minimum biclique cover problem (MBC)9 . Consider for example the matrix M

from Example 1. The largest biclique of the graph G generated by M has 4 edges10 . Since G has

24 edges, we have b(G) � 24
4

= 6 and therefore 6 � rank+(M) � min(m, n) = 6.

9 A similar result exists for the cp-rank (whenM is symmetric and U = V , see Section 1) bounded below by theminimumnumber

of cliques needed to cover the graph generated byM [6].
10 This can be computed explicitly, e.g., with a brute force approach. Note however that finding the biclique with the maximum

numberof edges is a combinatorialNP-hardoptimizationproblem[40]. It is closely related toavariantof theapproximatenonnegative

factorization problem [24].
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A crown graph G is a bipartite graph with |V1| = |V2| = n and E = {(V1(i), V2(j)) | i �= j} (it
can be viewed as a biclique where the horizontal edges have been removed). de Caen, Gregory

and Pullman [21] showed that

b(G) = min
k

{
k | n �

(
k

�k/2�
)}

= �(log n).

Beasley andLaffey [3] studied linear EuclideandistancematricesdefinedasM(i, j) = (ai−aj)
2

for 1 � i, j � n, ai ∈ R, ai �= aj when i �= j. They proved that such matrices have rank three

and that

min
k

{
k | n �

(
k

�k/2�
)}

� r+ which means n �
(

r+
�r+/2�

)
, (3.2)

where r+ = rank+(M). In fact, such matrices are biadjacency matrices of crown graphs (only

the diagonal entries are equal to zero).

2. Goemans makes [28] the following observation11 : if we compute r+ = rank+(M) and U ∈
Rm×r++ andV ∈ Rr+×n

+ such thatM = UV , theneachcolumnofM is equal toa linear combination

of the columns of U:

M:j =
r+∑
k=1

U:kVkj.

Because U and V are nonnegative, the support of M:j is equal to the union of the supports of

the columns U:k of U associated with a non-zero weight Vkj . In other terms, noting supp(x) =
{i | xi �= 0}, we have

supp(M:j) = ⋃
{k|Vkj �=0}

supp(U:k), ∀j.

Since U has r+ columns, the columns of M can have at most 2r+ different supports. Letting sM
be the number of columns of M ∈ Rm×n+ having different supports, we have

sM � 2r+ ⇐⇒ r+ � log2(sM),

which gives a simple lower bound for the nonnegative rank of M based on the support of its

columns. Clearly, the same analysis holds for the rows ofM. For example, if all the columns and

rows of M have different supports, then

rank+(M) � log2(max(m, n)). (3.3)

Goemans uses this bound to show that any extended formulation of the permutahedron (poly-

topewhose n! vertices are permutations of [1, 2, . . . , n]) in dimension nmust have�(n log(n))
variables and constraints. Observing that the slackmatrix of the permutahedron has n! columns

(corresponding to each vertex of the polytope) with different supports, combinedwith Eq. (3.3),

gives a lower bound for the minimal size s of any extended formulation of the permutahedron

(cf. Section 1):

s = �(rank+(SM) + n) � �(log(n!)) = �(n log(n)).

In this section, we provide some theoretical results linking the restricted nonnegative rank with

the nonnegative rank, which allow us to improve and generalize the above results in Section 4 for both

slack and linear Euclidean distance matrices.

11 The preprint of the paper, available at http://www-math.mit.edu/∼goemans/, does not explicitly mention the link with the

nonnegative rank. We summarize here the argument given by Goemans during his talk at ISMP09.

http://www-math.mit.edu/
goemans/
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3.1. Geometric interpretation of a nonnegative factorization as a nested polytopes problem

In the following, we lay the groundwork for the main results of this paper, introducing essential

notations and observations that will be extensively used in this section. We rely on the geometric

interpretation of the nonnegative rank, which was first introduced in [29]; see also [22,12,42] where

related results are presented.

Ourmain observation is that any rank-k nonnegative factorization (U, V) of a nonnegativematrixM

can be interpreted as the solution with k vertices of a nested polytopes problem in which the ambient

space has dimension rank(U) − 1, the outer polytope is full-dimensional while the inner polytope

spans an affine subspace of dimension rank(M) − 1. Since, as will be shown later, one can have

rank(M) < rank(U), the inner polytope is not necessarily full-dimensional and this nested polytopes

problem is not necessarily an instance of NPP.

Without loss of generality, let M ∈ Rm×n+ , U ∈ Rm×k+ and V ∈ Rk×n+ be column stochastic with

M = UV (cf. proof of Theorem 1, the columns ofM are convex combination of the columns of U). If the

column space of U does not coincide with the column space of M, i.e., ru = rank(U) > rank(M) = r,

it means that the columns ofU belong to a higher dimensional affine subspace containing the columns

of M (otherwise, see Theorem 1).

Let factorize U = AB where A ∈ Rm×ru and B ∈ Rru×r+ are full rank and their columns sum to

one. As in Theorem 1, we can construct the polytope of the coefficients of the linear combinations of

the columns of A that generate stochastic vectors. It is defined as

Pu =
⎧⎨
⎩x ∈ Rru−1 | fu(x) = A(:, 1 : ru − 1)x +

(
1 −

ru−1∑
i=1

xi

)
A(:, ru) � 0

⎫⎬
⎭ .

Since col(M) ⊆ col(U), there existsB′ ∈ Rru×nwhose columnsmust sumtoone such thatM = AB′.
Since rank(M) = r and A is full rank, we must have rank(B′) = r. By construction, the columns of

Bu = B(1 : ru − 1, :) (corresponding to the columns of U) and Bm = B′(1 : ru − 1, :) (corresponding
to the columns of M) belong to Pu. Note that since rank(B′) = r, the columns of Bm live in a polytope

Pm spanning an (r − 1)-dimensional affine subspace

Pm = {x ∈ Rru−1 | fu(x) � 0, fu(x) ∈ col(M)} ⊆ Pu.

Polytope Pm contains the points in Pu generating vectors in the column space of M. Moreover

M = AB′ = UV = ABV,

implying that (since A is full rank)

B′ = BV and Bm = BuV .

Finally, the columns of Bm are contained in the convex hull of the columns of Bu, inside Pu, i.e.,

conv(Bm) ⊆ conv(Bu) ⊆ Pu.

Defining the polytope T as the convex hull of the columns of Bu, and the set of points S as the columns

of Bm, we can then interpret the nonnegative factorization (U, V) of M as follows. The (ru − 1)-
dimensional polytope T with k vertices (corresponding to the columns of U) is nested between an

inner (r − 1)-dimensional polytope conv(S) (where each point in S corresponds to a column of M)

and an outer (ru − 1)-dimensional polytope Pu.

Let us use the matrix M and its nonnegative factorization (U, V) of Example 2 as an illustration:

since rank(U) = 4, our ambient space and outer polytope are three-dimensional, while rank(M) = 3

implies that inner polytope Pm is two-dimensional. The columns of Bu then define a three-dimensional

polytope T nested between conv(Bm) and Pu, see Fig. 2.
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Fig. 2. Illustration of the solution from Example 2 as a nested polytopes problem, with rank (M) = 3 < rank (U) = 4 <

rank+(M) = 5 < rank∗+(M) = 6 = n.

3.2. Upper bound for the restricted nonnegative rank

From the geometric interpretation introduced in the previous paragraph, we can now give themain

result of this section. The idea is the following: using notations of Section 3.1, we know that (1) the

polytope T (whose vertices correspond to the columns of U) contains the (lower dimensional) set of

points S (corresponding to the columns of M), and (2) S is contained in Pm (which corresponds to the

set of stochastic vectors in the column space ofM). Therefore, the intersection between T and Pm must

also contain S, i.e., the intersection T ∩ Pm defines a polytope which (1) is contained in the column

space ofM, and (2) contains S. Hence its vertices provide a feasible solution to the RNR problem, from

which an upper bound for the restricted nonnegative rank can then be computed. The corresponding

NPP problem is simply obtained by projection on the affine subspace spanning Pm.

In other words, any nonnegative factorization (U, V) of a nonnegative matrix M, including those

where rank(U) > rank(M), can be used to construct a feasible solution to the restricted nonnegative

rank problem. One has simply to compute the intersection of the polytope generated by the columns

of U with the column space of M (which can obviously increase the number of vertices).

Theorem 4. Using notations of Section 3.1, we have

rank∗+(M) � # vertices(T ∩ Pm). (3.4)

Proof. Let x1, x2, . . . , xv be the v vertices of T ∩ Pm and note X = [x1 x2 . . . xv] which has rank at

most r (since it is contained in the (r − 1)-dimensional polyhedron Pm). By construction,

Bm(:, j) ∈ T ∩ Pm = conv(X) 1 � j � n.

Therefore, there must exist a column stochastic matrix V∗ ∈ Rv×n such that

Bm = XV∗,

implying that

M = fu(Bm) = fu(XV
∗) = fu(X)V∗ = U∗V∗,
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where U∗ = fu(X) ∈ Rm×v is nonnegative since xi ∈ Pm ⊆ Pu ∀i, and U∗ has rank r since M = U∗V∗
implies that its rank is at least r and U∗ = fu(X) that it is at most r. The pair (U∗, V∗) is then a

feasible solution of the corresponding RNR problem for M and therefore rank∗+(M) � v = # vertices

(T ∩ Pm). �

3.3. Lower bound for the nonnegative rank based on the restricted nonnegative rank

We can now obtain a lower bound for the nonnegative rank based on the restricted nonnegative

rank. Indeed, if we consider an upper bound on the quantity # vertices(T ∩ Pm) that increases with

the nonnegative rank (i.e., the number of vertices of T), we can reinterpret Theorem 4 as providing a

lower bound on the nonnegative rank. For that purpose, define the quantity faces(n, d, k) to be the

maximal number of k-faces of a polytope with n vertices in dimension d.

Theorem 5. The restricted nonnegative rank of a nonnegative matrix M with r = rank(M) and r+ =
rank+(M) can be bounded above by

rank∗+(M) � max
r�ru�r+

faces(r+, ru − 1, ru − r). (3.5)

Proof. Let (U, V) be a rank-r+ nonnegative factorization of M with rank(U) = ru. Using notations

of Section 3.1 and the result of Theorem 4, rank∗+(M) is bounded above by the number of vertices of

T ∩ Pm. Defining Qm = {x ∈ Rru−1 | fu(x) ∈ col(M)}, we have Pm = Qm ∩ Pu and since T ⊆ Pu,

Pm ∩ T = Qm ∩ Pu ∩ T = Qm ∩ T .

Since Qm is (r − 1)-dimensional, the number of vertices of T ∩ Qm is bounded above by the number

of (ru − r)-faces of T (in a (ru − 1)-dimensional space, (ru − r)-faces are defined by r − 1 equalities),

we then have

rank∗+(M) � # vertices(T ∩ Pm) = # vertices(T ∩ Qm) � faces(r+, ru − 1, ru − r).

Notice that for ru = r, faces(r+, r − 1, 0) = r+ which gives r+ = rank∗+(M) as expected. Finally,

taking the maximum over all possible values of r � ru � r+ gives the above bound (3.5). �

We introduce for easier reference a function φr corresponding to the upper bound in Theorem 5,

i.e.,

φr(r+) = max
r�ru�r+

faces(r+, ru − 1, ru − r).

Clearly, for a given fixed r,φr is an increasing function of its argument r+, since faces(n, d, k) increases
with n. Therefore inequality rank∗+(M) � φr(r+) from Theorem 5 implicitly provides a lower bound

on the nonnegative rank r+ that depends on both rank r and restricted nonnegative rank rank∗+(M).
Explicit values for function φr can be computed using a tight bound for faces(n, d, k) attained by

cyclic polytopes [46, p.257, Corollary 8.28]

faces(n, d, k − 1) =
d
2∑

i=0

∗
((

d − i

k − i

)
+

(
i

k − d + i

)) (
n − d − 1 + i

i

)
,

where
∑ ∗ denotes a sumwhere only half of the last term is taken for i = d

2
if d is even, and the whole

last term is taken for i = � d
2
� = d−1

2
if d is odd. Alternatively, simpler versions of the bound can be

worked out in the following way:

Theorem 6. The upper bound φr(r+) on the restricted nonnegative rank of a nonnegative matrix M with

r = rank(M) and r+ = rank+(M) satisfies
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φr(r+) = max
r�ru�r+

faces(r+, ru − 1, ru − r)

≤ max
r�ru�r+

(
r+

ru − r + 1

)
≤

(
r+

�r+/2�
)

≤ 2r+
√

2

π r+
≤ 2r+ .

Proof. The first inequality follows from the fact that faces(n, d, k−1) �
(
n

k

)
, since any set of k distinct

vertices defines at most one (k− 1)-face. The second follows from themaximality of central binomial

coefficients. The third is a standard upper bound on central binomial coefficients, and the fourth is an

even cruder upper bound. �

Wewill see in Section 4 that some of these weaker bounds correspond to existing results from the

literature.

When matrix M is symmetric, the bound can be slightly strengthened, leading to a different

function φ′
r:

Corollary 3. Given a symmetric matrix M with r+ = rank+(M), r = rank(M) and r+ � r + 1, we have

rank∗+(M) � max
r�ru�r+−1

faces(r+, ru − 1, ru − r) = φ′
r(r+) � φr(r+).

Proof. We have seen in Lemma 3 that for symmetric matrices ru = r+ implies rank∗+(M) = r+.

Therefore, in case r+ � r + 1, one can strengthen the result of Theorem 5 and only consider the range

r � ru � r+ − 1. �

3.3.1. Improvements in the rank-three case

It is possible to improve the above bound by finding better upper bounds for # vertices(T ∩ Pm)
in Eq. (3.4). For example, since two-dimensional polytopes (i.e., polygons) have the same number of

vertices (0-faces) and edges (1-faces), we have for rank(M) = 3 that

# vertices(T ∩ Pm) = #edges(T ∩ Pm).

Using the same argument as in Theorem 5, the number of edges of T ∩ Pm is bounded above by the

number of (ru − r + 1)-faces of T (defined by r − 2 equalities) leading to

Corollary 4. The restricted nonnegative rank of a rank-three nonnegative matrix M with r+ = rank+(M)
can be bounded above with

rank∗+(M) � max
3�ru�r+

min
i=0,1

faces(r+, ru − 1, ru − 3 + i) ≤ φ3(r+). (3.6)

The minimum taken between 0 and 1 simply accounts for the two possible cases, i.e., the bound

based on # vertices(T ∩ Pm) with i = 0 as in Theorem 5, or based on #edges(T ∩ Pm) with i = 1. A

similar bound holds in the symmetric case.

Remark 1. Since rank+(M) = rank+(MT ), all the above bounds can be further improved using both

rank∗+(M) and rank∗+(MT ). Notice that rank∗+(MT ) amounts to requiring the second factor V to have

the same rank as M, i.e., rank(V) = rank(M).
It can be shown using a polar transformation that the NPP instance corresponding to computing

rank∗+(MT ) is equivalent to the NPP instance of M where one would minimize the number of facets

of T instead of its number of vertices. This observation can be used to generalize the improvements

described in this section to higher ranks12 , see [23, Section 3.6].

12 The rank-three case is very special because the number of vertices of any polygon is equal to its number of facets so that

rank∗+(M) = rank∗+(MT ) for rank(M) � 3.
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4. Applications

So far, we have not provided explicit lower bounds for the nonnegative rank. As we have seen,

inequalities (3.5) and (3.6) can be interpreted as implicit lower bounds on the nonnegative rank r+,

but have the drawback of depending on the restricted nonnegative rank, which cannot be computed

efficiently unless the rank of the matrix is smaller than 3 (Theorems 2 and 3).

Nevertheless, we provide in this Section explicit lower bounds for the nonnegative rank of slack

matrices (Section 4.1) and linear Euclidean distance matrices (Section 4.2), cf. introduction of Sec-

tion 3. These bounds are derived by showing that the restricted nonnegative rank of such matrices is

maximum, i.e., it is equal to the number of columns of these matrices (cf. Lemma 1).

4.1. Slack matrices

Let start with a simple observation: it is easy to construct anm-by-nmatrix of rank r < min(m, n)
with maximum restricted nonnegative rank n:

1. Take any (r − 1)-dimensional polytope P with n � r + 1 vertices.

2. Construct a NPP instance with S = vertices(P).
3. Compute the corresponding matrixM in the equivalent RNR instance.

Clearly, the unique solution for NPP is T = P = conv(S) and therefore thematrixM in the correspond-

ing RNR instance must satisfy: rank∗+(M) = # vertices(T) = n; see Example 1 for an illustration with

the three-dimensional cube.

Remark 2. Matrices constructed from the procedure described above also satisfy

rank(M) < rank+(M).

Otherwise rank∗+(M) = rank+(M) = rank(M) < min(m, n) which is a contradiction. This is inter-

esting because it is nontrivial to construct matrices with rank(M) < rank+(M) [37]. In fact, it is easy

to check that picking two random nonnegative matrices U and V of dimensions m-by-r and r-by-n

respectively, and constructingM = UV will generate with probability one a matrixM of rank r, hence

with rank(M) = rank+(M) .

In the context of compact extended formulations (cf. Section 1), given a polytope Q with a large

(exponential) number of facets, the goal is to find a smaller (polynomial-size) lifting, i.e. to use a smaller

number of constraints in a higher-dimensional space (i.e., with additional variables). A possible way

to do that is to compute a nonnegative factorization of the slack matrix SM of Q [45] (see Eq. (1.1)). The

next theorem states that the restricted nonnegative rank of any slack matrix SM ∈ Rf×v
+ is maximum

(f is the number of facets of Q , v its number of vertices), i.e., rank∗+(SM) = v. This is directly related to

the above observation: the slack matrix of a polytope Q corresponds to a NPP instance where Q is the

outer polytope and its vertices are the points defining the inner polytope. Notice that the restricted

nonnegative rank used as an upper bound for the nonnegative rank is useless in this case.

Theorem 7. Let Q = {x ∈ Rq | Fx � h, Ex = g} be a p-dimensional polytope with v vertices, v > 1, and

let SM(Q) be its slack matrix, then rank∗+(SM(Q)) = v.

Proof. In order to prove this result, we first construct a bijective transformation L between Q and a

full-dimensional polytope P ⊆ Rp. The vertices of P can then be easily constructed from the vertices

of Q , which allows to show that P and Q share the same slack matrix. Finally, using the result of

Theorem 1, we show that the slack matrix of P has maximum restricted nonnegative rank.

Since Q is a p-dimensional polytope, there exists a polytope P ⊆ Rp and a bijective affine transfor-

mation

L : Q → P : x → L(x) = Ax + b and L−1 : P → Q : y → L−1(y) = A†y − A†b,
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such that P = L(Q) and Q = L−1(P) (where A ∈ Rp×q has full rank, A† ∈ Rq×p is its right inverse

and b ∈ Rp).

By construction,

P = {y ∈ Rp | y = L(x), x ∈ Q} = {y ∈ Rp | L−1(y) ∈ Q},
= {y ∈ Rp | FL−1(y) � h, EL−1(y) = g},
= {y ∈ Rp | FA†y � h + FA†b},

since the equalities EL−1(y) = g must be satisfied for all y ∈ Rp since P is full-dimensional.

Noting C = FA† and d = h + FA†b, we have P = {y ∈ Rq | Cy � d}. Finally, we observe that

1. Noting qi 1 � i � v the vertices of Q , we have that L(qi)’s define the v vertices of P. This can

easily be checked since L is bijective (∀y ∈ P, ∃!x ∈ Q s.t. y = L(x) and vice versa).

2. P can be taken as the outer polytope of a NPP instance, i.e., P is bounded and (C d) is full rank.
P is bounded since Q is. C is full rank because P has at least one vertex (v > 1). If (C d) was

not full rank, then ∃z ∈ Rp such that d = Cz, implying that z ∈ P. Since P has at least two

vertices (v > 1), ∃y ∈ P with y �= z, and one can check that y + α(y − z) ∈ P ∀α � 0. This is a

contradiction because P is bounded.

3. The slack matrix of P is equal to the slack matrix of Q :

SM(P) = CL(V) − [d . . . d] = FA†L(V) − [h + FA†b . . . h + FA†b]
= F(A†L(V) − [A†b . . . A†b]) − [h . . . h]
= FL−1(L(V)) − [h . . . h] = FV − [h . . . h]
= SM(Q),

where V = [v1 v2 . . . vv] is the matrix whose columns are the vertices of Q , and L(V) =
[L(v1) L(v2) . . . L(vv)] is the matrix whose columns are the vertices of P.

4. The NPP instance with P as the outer polytope and its v vertices L(qi)’s as the set of points S

defining the inner polytope has a unique and optimal solution T = P = conv(S)with v vertices.

ThematrixM in the RNR instance corresponding to this NPP instance is given by the slackmatrix

SM(P) of P implying that its restricted nonnegative rank is equal to v (cf. Theorem 1).

We conclude that rank∗+(SM(Q)) = v. �

We can now derive a lower bound on the nonnegative rank of a slack matrix and on the size of an

extended formulation, by combining Theorem 5 (cf. Eq. (3.5)), Theorem 6, Theorem 7 and the result of

Yannakakis [45] (see also Section 1).

Corollary 5. Let P be a polytope with v vertices and let SM ∈ Rf×v
+ be its slack matrix of rank r (i.e., P has

dimension r − 1), then

v � φr(r+) � max
r�ru�r+

(
r+

ru − r + 1

)
�

(
r+

�r+/2�
)

� 2r+ , (4.1)

where r+ = rank+(SM). Therefore, the minimum size s of any extended formulation of P follows

s = �(r+ + n) � �(φ−1
r (v)) � �(log2(v)).

The last bound 2r+ from Eq. (4.1) is the one of Goemans [28, Theorem 1] (see introduction of

Section 3), and therefore Corollary 5 provides us with an improved lower bound, even though it is

still growing as �(log2(v)). Actually, a lower bound with faster growth simply cannot exist for the



2704 N. Gillis, F. Glineur / Linear Algebra and its Applications 437 (2012) 2685–2712

Fig. 3. Illustration of the restricted nonnegative rank of a linear EDM of dimension 5. The solution T must contain a point in each dark

region, that is rank∗+(M) = |T| = |S| = 5.

permutahedron because of the above-mentioned results of Goemans implying that the nonnegative

rank of its slack matrix is in �(n log(n)).

4.2. Linear Euclidean distance matrices

Linear Euclidean distance matrices (linear EDM’s) are defined by

M(i, j) = (ai − aj)
2, 1 � i, j � n, for some a ∈ Rn. (4.2)

In this section we assume ai �= aj when i �= j, so that these matrices have rank three. Linear EDM’s

were used in [3] to show that the nonnegative rank of amatrix with fixed rank (rank 3 in this case) can

be made as large as desired (while increasing the size of the matrix), implying that an upper bound

for the nonnegative rank of a matrix based only on the rank cannot exist.

We refer the reader to [34] and the references therein for detailed discussions about Euclidean

distance matrices, and related applications.

4.2.1. Restricted nonnegative rank of linear Euclidean distance matrices

We first show that the restricted nonnegative rank of linear EDM’s is maximum, i.e., it is equal to

their dimension n.

Definition 2. The columns of a matrixM have disjoint 13 sparsity patterns if and only if

si � sj, ∀i �= j,

where si = {k|M(k, i) = 0} is the sparsity pattern of the ith column of M.

Theorem 8. Let M be a rank-three nonnegative squarematrix of dimension nwhose columns have disjoint

sparsity patterns, then

rank∗+(M) = n.

In particular, linear EDM’s have this property.

Proof. Let P, S and T be the polygons defined in the two-dimensional NPP instance corresponding

to the RNR instance of M (cf. Theorem 1). Aggarwal et al. [1] observe that if two points in S are on

different edges of P, they define a polygon with the boundary of P (see each dark regions in Fig. 3)

which must contain a point of the solution T . Otherwise these two points could not be contained in

T (see also Section 2.2.1). Therefore if each point of S is on a different edge of the boundary of P, any

solution T to NPP must have at least |S| = n vertices since S defines n disjoint polygons with the

boundary of P. Finally, two points x1 and x2 in S are on different edges of the boundary of the polytope

P = { x ∈ R2 | Cx + d � 0} if and only if (Cx1 + d) and (Cx2 + d) have disjoint sparsity patterns or,

equivalently, if and only if the two corresponding columns ofM (which are precisely equal to Cx1 + d

13 This definition is slightly abusive since disjoint should refer to sets with an empty intersection.
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Table 1

Comparison of the lower bounds for the nonnegative rank of linear EDM’s.

Dimension n 4 5 6 7 8 9 10

Eq. (3.6) 4 5 5 6 6 6 7

Eq. (3.5) 4 5 5 5 5 5 6

Beasley and Laffey (3.2) 4 4 4 5 5 5 5

Goemans (3.3) 3 3 3 3 4 4 4

and Cx2 + d) in the RNR instance have disjoint sparsity patterns. Indeed, for two vertices a and b to be

located on different edges, one needs at least (1) one inequality that is active at a and inactive at b and

(2) another inequality that is active at b and inactive at a. This is equivalent to requiring the sparsity

patterns of the corresponding columns of the matrix M to be disjoint. �

Remark 3. This result does not hold for higher rank matrices. For example, the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 4 9 16 25

2 0 1 4 9 16

8 1 0 1 4 9

13 4 1 0 1 4

17 9 4 1 0 1

25 16 9 4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= UV, U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 4 5 1

1 0 1 3 0

4 0 0 1 1

4 1 0 0 1

1 3 1 0 0

0 5 4 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 1

5 3 1 0 0 0

0 0 1 1 0 0

0 0 0 1 3 5

0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

has rank(M) = 4 and rank∗+(M) � 5 since rank(U) = 4. Therefore we cannot conclude that higher

dimensional Euclidean distance matrices have maximal restricted nonnegative rank.

4.2.2. Nonnegative rank of linear Euclidean distance matrices

Since linear EDM’s are rank-three symmetric matrices, one can combine the results of Theorem 8

with Corollary 4 (cf. Eq. (3.6)) and Corollary 3 in order to obtain lower bounds for the nonnegative rank

of linear EDM’s.

Corollary 6. For any linear Euclidean distance matrix M, we have

rank∗+(M) = n � max
3�ru�r+−1

min
i=0,1

faces(r+, ru − 1, ru − r + i)

� max
3�ru�r+−1

faces(r+, ru − 1, ru − r) = φ′
r(r+)

�
(

r+
�r+/2�

)
� 2r+ .

We observe that our results (first two inequalities above, from Theorem 5 and Corollary 4)

strengthen the bounds from Equations (3.2) (Beasley and Laffey [3]) and (3.3) (Goemans [28]). Fig. 4

displays thegrowthof thedifferent bounds, andTable1 compares the lowerboundson thenonnegative

rank for small values of n.

For example, for a linear EDM to be guaranteed to have nonnegative rank 10, the bounds requires

respectively n = 50 (3.6), n = 150 (3.5), n = 252 (3.2) and n = 1024 (3.3). This is a significant

improvement, even though all the bounds are still of the same order with r+ = �(log(n)).
Is it possible to further improve these bounds? Beasley and Laffey [3] conjectured that the nonneg-

ative rank of linear EDM’s ismaximum, i.e., it is equal to their dimension. Lin and Chu [37, Theorem3.1]

first claimed to have proved that this equality always holds. However, Chu [11] has recently reported
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Fig. 4. Comparison of the different bounds for symmetric n-by-n matrices, with rank∗+(M) = n.

an error in the proof 14 . Indeed, not all linear EDM’s have maximum nonnegative rank because of the

following example.

Example 3. Taking M ∈ R6×6+ with

M(i, j) = (i − j)2, 1 � i, j � 6,

gives rank+(M) = 5. In fact,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 4 9 16 25

1 0 1 4 9 16

4 1 0 1 4 9

9 4 1 0 1 4

16 9 4 1 0 1

25 16 9 4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 4 0 1

3 0 1 1 0

1 0 0 4 1

0 1 0 4 1

0 3 1 1 0

0 5 4 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 3 5

5 3 1 0 0 0

0 0 1 1 0 0

1 0 0 0 0 1

0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.3)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 1 0 0

3 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 3 0 1 0

0 5 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 3 5

5 3 1 0 0 0

0 1 4 4 1 0

1 0 1 1 0 1

4 1 0 0 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.4)

so that rank+(M) � 5, and rank+(M) � 5 is guaranteed by Eq. (3.6), see Table 1 with rank∗+(M) =
n = 6 (or by Lemma 3, see Example 2).

14 In their proof, they actually show that the restricted nonnegative rank ismaximum (not the nonnegative rank), see Theorem 8. In

fact, theyonly consider the casewhen thevertices of the solution T (corresponding to the columnsofU) belong to the low-dimensional

affine subspace spanned by S (corresponding to the columns of M) in the NPP instance.
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Example 3 proves that linear EDM’s do not necessarily have a nonnegative rank equal to their

dimension. In fact, we can even show that

Theorem 9. Linear EDM’s of the following form

Mn(i, j) = (i − j)2 1 � i, j � n,

satisfy

rank+(Mn) � 2 +
⌈n
2

⌉
,

where �x� is the smallest integer greater or equal to x.

Proof. Let first assume that n is even and define

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 1 0

n − 3 0

...
... In/2

3 0

1 0

0 1

0 3

...
... Pn/2

0 n − 3

0 n − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 n − 1

0 n − 3

...
... Mn/2

0 3

0 1

1 0

3 0

...
... Pn/2Mn/2

n − 3 0

n − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

where Im is the identity matrix of dimension m and Pm is the permutation matrix with Pm(i, j) =
Im(i,m − j + 1) ∀i, j; see Eq. (4.4) for an example when n = 6. One can check that

Mn = UV =
⎛
⎝ Mn/2 A + Pn/2Mn/2

AT + Pn/2Mn/2 Mn/2

⎞
⎠ , with A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 1

n − 3

...

3

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3

...

n − 3

n − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

.

If n is odd, we simply observe that rank+(Mn) � rank+(Mn+1) � 2 + n+1
2

= 2 + � n
2
�, since Mn is a

submatrix ofMn+1 [15]. �

Remark 4. In the construction of Theorem 9, one can check that rank(V) = 4 and the factorization

can then be interpreted as a nested polytopes problem (corresponding to MT = VTUT ) in which the

outer polytope has dimension three only. Therefore, there is still some room for improvement and

rank+(Mn) is probably (much?) smaller.

This example also demonstrates that, in some cases, the structure of small size nonnegative factor-

izations (in this case, the one from Example 3) can be generalized to larger size nonnegative factoriza-

tion problems. This might open new ways to compute large nonnegative factorizations.



2708 N. Gillis, F. Glineur / Linear Algebra and its Applications 437 (2012) 2685–2712

Fig. 5. Illustration of the solution from Eq. (4.4) as a nested polytopes problem, based on a linear EDM with rank (M) = 3 <

rank (U) = 4 < rank+(M) = 5 < rank∗+(M) = 6 = n.

In Example 3, the nonnegative rank is smaller than the restricted nonnegative rank because there

exists a higher dimensional polytope with only 5 vertices whose convex hull encloses the 6 vertices

defined by the columns of M. Nested polytopes instances corresponding to the RNR instance with M

given by Example 3 and the two above solutions are illustrated on Figs. 2 and 5 respectively (note

that they are transposed to each other, but correspond to different solutions of the NPP instance), see

Section 3.1. Notice that the second solution (Fig. 5) completely includes the outer polytope P; therefore,

the nonnegative rank of any nonnegative matrix with the same column space as the matrixM will be

at most 5.

Remark 5. The solutions of the above nonnegative rank problems have been computedwith standard

nonnegative matrix factorization algorithms [35,13,25] and, in general, the optimal solution is found

after 10 to 100 restarts of these algorithms15 .

4.3. The nonnegative rank of a product

Beasley and Laffey [3] proved that for A = BC with A, B and C � 0

rank+(A) � rank(B) rank(C).

In particular, rank+(A2) � rank(A)2. They also conjectured that for a nonnegative n × n

matrix A,

rank+(A2) � rank(A),

which we prove to be false with the following counterexample (based on a circulant matrix)

15 These algorithms are based on standard nonlinear optimization schemes (rescaled gradient descent and block-coordinate de-

scent), and require initial matrices (U, V), which were randomly generated.
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Fig. 6. Illustration of a NPP instance corresponding to A2 and an optimal solution T , cf. Eq. (4.5).

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 a 1 + a 1 + a a 1 0

0 0 1 a 1 + a 1 + a a 1

1 0 0 1 a 1 + a 1 + a a

a 1 0 0 1 a 1 + a 1 + a

1 + a a 1 0 0 1 a 1 + a

1 + a 1 + a a 1 0 0 1 a

a 1 + a 1 + a a 1 0 0 1

1 a 1 + a 1 + a a 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.5)

wherea = 1+√
2. In fact, onecancheck that rank(A) = 3andrank+(A2) = 4: indeed, rank∗+(A2) = 4

can be computed with the algorithm of Aggarwal et al. [1] (see Fig. 6 for an illustration16 ) and, by

Corollary 2, rank+(A2) = rank∗+(A2) since rank∗+(A2) � rank(A2) + 1 = 4.

Remark 6. The matrix A from Eq. (4.5) is the slack matrix of a regular octagon with sides of length√
2. By Theorem 7, we have rank∗+(A) = 8. Notice also that A has rank 3 and its columns have disjoint

sparsity patterns so that rank∗+(A) = 8 is implied by Theorem 8 as well. What is the nonnegative rank

of A? Defining

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

16 The code used to perform the reduction is available at https://sites.google.com/site/nicolasgillis/code.

https://sites.google.com/site/nicolasgillis/code
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Fig. 7. Illustration of a nested polytopes instance corresponding to A and an optimal solution, cf. Eqs. (4.5) and (4.6).

we have that B = AR is symmetric, has rank 3 and only has zeros on its diagonal. By Theorem 8,

rank∗+(B) = 8. Using Table 1, we have rank+(B) � 6. Moreover

rank+(AR) � min(rank+(A), rank+(R)),

implying that 6 � rank+(B) � rank+(A). Finally, rank+(A) = 6 because

A = UV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 a

a 0 0 0 1 a + 1

1 1 0 0 0 a

0 a − 1 1 0 0 1

0 1 a 0 1 0

1 0 a + 1 0 a 0

0 0 a 1 1 0

0 0 1 a − 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 0

1 0 0 0 0 1 a a

1 1 0 0 0 0 0 0

0 1 a a 1 0 0 0

0 0 1 0 0 0 0 1

0 0 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.6)

with rank(U) = 4 and rank(V) = 5. Fig. 7 displays the corresponding nested polytopes problem, see

Section 3.1.

It is interesting to observe that, from this nonnegative factorization, one can obtain an extended

formulation (lifting) Q of the regular octagon P = {x ∈ R2 | Cx � d}, defined as Q = {(x, y) ∈
R2 × R6 | Cx + Uy = d, y � 0}, with

C =
⎛
⎝ 1

√
2/2 0 −√

2/2 −1 −√
2/2 0

√
2/2

0
√

2/2 1
√

2/2 0 −√
2/2 −1 −√

2/2

⎞
⎠

T

,

and d(i) = 1+
√

2
2

∀i, see Eq. (1.2). Since the system of equalities Cx + Uy = d only defines 4 linearly

independent equalities (rank([C U]) = 4), the description of Q can then be simplified and expressed

with 4 variables and 6 inequality constraints.

This extended formulation is actually a particular case of a construction proposed by Ben-Tal and

Nemirovski [4] (see also [27,32]) to find an extended formulation of size O(k) for the regular 2k-gon

in two dimensions.
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Table 2

Complexity of restricted nonnegative rank and nonnegative rank computations.

r = rank (M) r∗+ = rank∗+(M) r+ = rank+(M)

r not fixed NP-hard NP-hard [42]

r � 4 fixed NP-hard (Theorem 3) NP-hard?

r = 3 Polynomial (Theorem 2) Polynomial if r∗+ � 5

Otherwise NP-hard?

r � 2 Trivial (= r) Trivial (= r) [41]

5. Concluding remarks

In this paper, we have introduced a new quantity called the restricted nonnegative rank, whose

computation amounts to solving aproblem in computational geometry consisting of finding apolytope

nestedbetween twogivenpolytopes. This allowedus to fully characterize its computational complexity

(see Table 2). This geometric interpretation and the relationship between the nonnegative rank and

the restricted nonnegative rank let us derive new improved lower bounds for the nonnegative rank,

in particular for slack matrices and linear Euclidean distance matrices. This also allowed us to provide

counterexamples to two conjectures concerning the nonnegative rank.

We conclude the paper with the following conjecture:

Conjecture 1. Computing the nonnegative rank and the corresponding nonnegative factorization of a

nonnegative matrix is NP-hard when the rank of the matrix is fixed and greater or equal to 4 (or even

possibly 3).

In fact, we have shown that computing a nonnegative factorization amounts to solving a nested

polytopes problem in which the outer polytope might live in a higher dimensional space. Moreover,

this space is not knownapriori (we just know that it contains the columnsof thematrix to be factorized

and is contained in the unit simplex {x ∈ Rm|x � 0,
∑

i xi = 1}, cf. Section 3.1). Therefore, it seems

plausible to assume that this problem is at least as difficult as the restricted nonnegative rank com-

putation problem in which the outer polytope lives in the same low-dimensional space and is known.

Even in the rank-three case, even though the inner polytope has dimension two, the outer polytope

might have any dimension (up to the dimensions of the matrix; see, e.g., Figs. 2 and 5); therefore, it

seems that the nonnegative rank computation might also be NP-hard if the rank of the matrix is equal

to three. Note that, when rank(M) = 3 and rank∗+(M) � 5, Eq. (3.5) implies rank+(M) = rank∗+(M)
so that the nonnegative rank can be computed in polynomial-time in this particular case. Moreover,

Arora et al. [2] have shown very recently that checking whether the nonnegative rank of an m-by-n

nonnegative matrix is equal to k can be done in polynomial time inm and n (not in k). They have also

proved that if theNNR could be checked to be equal to k in time (mn)o(k), then 3-SATwould have a sub-

exponential time algorithm, essentially ruling out polynomial time algorithms for checking whether

rank+(M) = kwhen k is part of the input. This reinforces the conjecture above, since the nonnegative

rank can be arbitrarily large even if the rank of the matrix is fixed.

Table 2 recapitulates the complexity results for the restrictednonnegative rank and thenonnegative

rank of a nonnegative matrixM.
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